

Shipboard Power System Characteristics

Shipboard Power System Fundamentals

Revision of 20 December 2025

Dr. Norbert Doerry

<http://doerry.org/norbert/MarineElectricalPowerSystems/index.htm>

© 2025 by Norbert Doerry

This work is licensed via: CC BY 4.0 (<https://creativecommons.org/>)

Essential Questions

What is electrical power used for onboard ship?	Understand
What are the implications of a need for high power reliability / Quality of Service?	Understand
What are the implications of a need for survivable power systems?	Understand
What are the implications of the marine environment?	Understand

Uses of electrical power onboard ship

- IEEE Std 45.1
 - 100 Propulsion
 - 200 Batteries and battery chargers
 - 300 Power conversion equipment
 - 400 Lighting
 - 500 Electronics
 - 600 Navigation systems
 - 700 Auxiliaries
 - 800 Heating ventilation and air conditioning systems
 - 900 Deck machinery
 - 1000 Food services
 - 1100 Workshops/Laundry equipment
- MIL-STD-881
 - 100 Hull structure
 - 200 Propulsion plant
 - 300 Electric plant
 - 400 Command, communications, and surveillance
 - 500 Auxiliary systems
 - 600 Outfit and furnishings
 - 700 Armament

A ship is a floating city

Power Quality – Quality of Service

- Power Quality
 - Power consistently adheres to interface standard
 - MIL-STD-1399 section 300 part 1 (LVAC)
 - MIL-STD-1399 section 300 part 2 (MVAC)
 - IEEE Std 45.1 (all)
 - Measured at the interface between power system and loads
 - Similar to the point of common-coupling in terrestrial power systems
- Quality of Service
 - Mean time between service interruption (MTBSI)
 - A service interruption is a power interruption that lasts longer than a load can tolerate
 - Reconfiguration time (t_1) is the maximum time to reconfigure the distribution system in response to a fault without bringing on additional generation capacity.
 - Function of technology used in circuit protection devices.
 - Generator start time (t_2) is the maximum time to bring the slowest generator set (that can act as a standby generator set) online.
 - Loads categorized by tolerance to power interruptions
 - Uninterruptible – cannot tolerate power interruptions of duration t_1 .
 - Short term interrupt – can tolerate power interruptions of duration t_1 , cannot tolerate power interruptions of duration t_2 .
 - Long term interrupt – can tolerate power interruptions of duration t_2 .

Characteristics of shipboard power systems (As compared to terrestrial systems)

- Frequency is not a constant
- Lack of time scale separation
- Load sharing instead of power scheduling
- Short electrical distances
- Load dynamics may be important
- Tighter control
- Ungrounded or high-resistance grounded systems
- Physical environment

Survivability

- Threats
 - Collision
 - Flooding
 - Fire
 - Cyber attack
 - Weapons detonation (naval ships only)
- Susceptibility
 - Likelihood that the electrical power system will be exposed to a threat
- Vulnerability
 - How well the electrical power system maintains power quality and power continuity following exposure to a threat
- Recoverability
 - How quickly electrical power can be restored following an outage caused by a threat.

Survivability requirements

- Commercial ships
 - Regulations (law)
 - International Treaties such as SOLAS
 - Classification Societies (such as ABS, DNV, LR)
- Complex ships – Zonal Design
 - Ship is divided into multiple zones
 - Zone boundaries align with the hull and watertight subdivision bulkheads
 - Same zone boundaries apply to all distributed systems.
 - Zonal Survivability
 - Damage to one or two adjacent zones does not result in a service interruption in undamaged zones.
(May only apply to mission critical equipment)
 - Addresses Vulnerability
 - Compartment Survivability
 - Power can be quickly restored to mission critical equipment in a damaged zone if it is same to do so.
 - Addresses Recoverability
 - May incorporate a casualty power system

Marine Environment

- Characteristics
 - Ship motions (roll, pitch, slam, list, trim, etc.)
 - Atmosphere (extreme temperature variation, high salt, high humidity)
 - Vibration
 - Damaging fumes or vapors
 - Abrasive particles
 - Salt spray
 - Ice
 - Sunlight
 - Shock and blast (naval ships)
- Standards
 - IEEE Std. 45.1
 - MIL-DTL-917 Basic Requirements
 - MIL-DTL-901 Shock Tests
 - MIL-STD-167-1 Mechanical Vibrations
 - MIL-STD-1399-301 Ship Motion and Attitude
 - MIL-STD-1399-302 Weather Environment